Remote anaesthesia

Anaesthesia in a hyperbaric chamber

Anaesthesia in a dental surgery

Problems in transporting patients
Anaesthesia in a hyperbaric chamber

Hyperbaric chamber
 Increased atmospheric pressure, usually up to 3 atm
 Commonly chamber contains air, but oxygen headboxes or masks are used to deliver high FiO₂

Indications
 CO poisoning, gas embolism, decompression illness
 Acute infections, sports injuries
 Maintenance of oxygen transport in anaemia
 Increased arterial oxygenation in anaesthesia

Physiological effects
 Increased barometric pressure
 Pressure reversal of anaesthesia requires much higher pressures
 Increased partial pressure of oxygen, risk of toxicity

Practical use
 Limited duration
 Oxygen toxicity
 Decompression obligation
 Monitoring difficulty
 Patient discomfort

Equilibration
 Middle ear and lung

Equipment
 Increased fire hazard so minimal use of electrical devices
 Monitors usually placed outside chamber with long cables
 Pressure devices need adjustment
 Catheter balloons need deflation prior to compression or decompression (e.g. Swan)
 Blood gas assessment is complicated by decompression of sample
 Defibrillation is hazardous
 IV giving set air-fluid level changes with pressure change

Anaesthetic machine
 Flow meters under read
 Vaporizers deliver same partial pressure but reduced vol%
 Special ventilators required

Anaesthesia
 Trials in
 Carotid, caesarean, lung lavage
Would you anaesthetize in a dental surgery?

College Policy T5 (1995)

Principles of anaesthetic care
- Suitable medical practitioner
- Medical preanaesthetic consultation
- Compliant monitoring
- Anaesthetist has discretion to cancel cases

Staffing
- Assistant to the anaesthetist
- Assistance for positioning
- Technical assistance for equipment service

Equipment
- Anaesthetic machine for each anaesthetizing location
- Calibrated vaporizers
- Suitable breathing systems
- Paediatric breathing systems if children are being anaesthetized
- Safety devices
 - Indexed gas connection, oxygen reserve supply, oxygen failure warning device, oxygen analyzer, anti-hypoxic interlock, pressure relief valve, non-slip common gas outlet connection, scavenging
- Separate ventilating device with independent oxygen supply
- Compliant suction equipment
- Other equipment
 - Gloves, masks, eye protection etc.
 - Stethoscope, sphygmomanometer, compliant monitoring
 - Range of face masks, airways, ETTs and connectors
 - Two laryngoscopes and a range of blades
 - Introducers, syringe, clamps, Magill’s forceps, tapes, scissors, lube, throat pack
 - Tourniquets, IV equipment, sharps container
- Regional equipment
- Defibrillator

Environment
- Good lighting
- Emergency lighting
- Telephone or intercom
- Refrigerator
- Environmental temperature control
- Chair which allows rapid head-down or horizontal positioning

Drugs
- Anaesthetic agents
- Emergency drugs for initial management of
 - Anaphylaxis, arrhythmias, cardiac arrest, pulmonary oedema, hypotension, hypertension, bronchospasm, respiratory depression, hypoglycaemia, hyperglycaemia, adrenal dysfunction, malignant hyperpyrexia (dantrolene at nearby hospital), coagulopathy
- Mechanism for checking use-by dates

Maintenance
- Routines for checking equipment
- Twice yearly service of anaesthetic machine with documentation
- Protocol for checking the anaesthetic machine

Recovery
- Compliant recovery room
- Contingency plan for emergency transfer to hospital care
Problems in transporting patients.

Assistance
 Two staff minimum for patient transport
 One to resuscitate, one to get help
 At least one must be familiar with the route and destination

Airway and breathing
 If intubated, the ETT must be well-secured
 Ventilation
 Apnoeic for short periods (e.g. induction room to OR)
 Self-inflating bag
 Gas-powered ventilator (e.g. Dräger Oxylog)
 Battery-powered ventilator (e.g. some Siemens models, Dräger Julian)
 Portable oxygen source adequate for expected duration of transport
 Portable suction
 N₂O and anaesthetic vapours usually not available
 Vaporizers do not operate correctly when shaken

Circulation
 External pacing device must have adequate battery power and leads secure
 Intravenous infusions must have adequate length and be well-secured
 Best attached to bed
 Warming devices will not operate without AC power
 Circulatory support devices must have adequate tubing length and battery power
 and triggering not subject to interference (e.g. IABP, LVAD)

Monitoring
 SpO₂, ECG, NIBP or invasive pressure usually available
 Adequate lead length and battery power required
 Gas analysis, complex monitors usually not available
 Vibration in transport may interfere with all monitors
 Greater dependence on clinical signs: pulse, colour, chest movement
 Conflicts with need to keep patient covered and warm

Drugs and equipment
 Awake patient
 Emergency induction drugs and airway equipment
 Maintenance of anaesthetized patient
 Sedative or hypnotic agents
 e.g. midazolam, morphine, thiopentone, propofol
 Relaxants
 longer-acting agents preferred
 Emergency drugs
 Resuscitation drugs, pressors
 Specific agents depending on patient's condition
 e.g. anticonvulsants, vasodilators

Other
 Surgical drains
 Chest drains clamped or placed so as to ensure no “backflow”

College Policy: Minimum Standards for Transport of the Critically Ill (P23)

Administrative guidelines
 Central coordination to minimize delays
 Clear determination of responsibility
 Appropriate documentation
 Quality assurance mechanism

Categories of transport
 Prehospital, interhospital (emergency and semi-elective), intrahospital

Staffing
Prehospital: appropriate ambulance service personnel
Interhospital: experienced medical, nursing, technical and ambulance staff
Specifically trained personnel for neonatal and infant transport
Intrahospital: appropriate medical and nursing personnel

Transport
Vehicle determined by availability, urgency, distance, conditions
Requirements for safety, space, gases and energy, access, lighting, temperature control, restraints, noise and vibration, speed, communication, pressurization, headsets for auditory alarms
Special issues with aircraft: pressure, space, motion, noise
Fundamental requirement for stable vital signs, secure airway, secure IV, secure catheters and appropriate monitoring before departure

Equipment
Regard to size, weight, durability, battery life, restraint
Respiratory
Oxygen, airways, masks, nebulizer, self-inflating bag with PEEP, suction, ventilator with pressure and disconnect alarms, intubation set, cricothyroidotomy set, pleural drainage set
Circulatory
Monitor, defibrillator, pacer, oximeter, anaeroid sphygmomanometer, cannulae, fluids, pump set, infusion pumps, arterial pressure transducer, syringes, needles, MAST
Other
NGT, IDC, Cophenylcaine, instruments, sutures, dressings, prep, gloves, insulation, thermometer, splints
Drugs
Resuscitation drugs for all likely emergencies
Arrest, hypotension, hypertension, arrhythmia, APO, anaphylaxis, bronchospasm, hypoglycaemia, hyperglycaemia, raised ICP, uterine atony, adrenal dysfunction, narcotic depression, convulsions, agitation, pain, vomiting, electrolyte disturbance

Monitoring
Appropriate to the situation
Clinical monitoring is fundamental
Circulation: pulse and BP
Respiration: frequent assessment
Oxygenation: observation and pulse oximetry
Minimum standards
O₂ supply failure alarm, pulse oximeter, disconnect or ventilator failure alarm, high airway pressure alarm, ECG